Answer:
The answer is "711"
Explanation:
Calculated equation:
[tex]R(x) =(120-x)(342+9x)\\\\R(x) =-9x^2+738x+41040[/tex]
For maximum revenue [tex]R'(x)=0[/tex]
[tex]\to R'(x) =-18x+738\\\\\to 18x=738\\\\\to x=\frac{738}{18}\\\\\to x=41\\\\[/tex]
So, maximum revenue:
[tex]\to 342+9\times 41\\\\\to 342+369\\\\\to 711[/tex]