Answer:
[tex]X=85.123m[/tex]
[tex]Y=184.88m[/tex]
Step-by-step explanation:
From the question we are told that:
Campfire Bearing from Colonel[tex]x=N 71 \textdegree E[/tex]
Distance b/w Colonel and Sarge [tex]Z=235feet[/tex]
Campfire Bearing from Sarge [tex]y=N 45 \textdegree E[/tex]
Generally the angles x' and y' are solved
[tex]x'=90 \textdegree-71 \textdegree[/tex]
[tex]x'=19 \textdegree[/tex]
[tex]y'=90 \textdegree-45 \textdegree[/tex]
[tex]y'=45 \textdegree[/tex]
Generally the angle z' is solved
Sum of angles of a triangle is 180
Therefore
[tex]z'=180 \textdegree-(19+45) \textdegree[/tex]
[tex]z'=116 \textdegree[/tex]
Generally the sine rule equation for for all distances is mathematically given by
[tex]\frac{Z}{sinz'}=\frac{X}{sinx'}=\frac{Y}{siny}[/tex]
Generally the the distance b/w the Colonel and the campfire X is mathematically given as
[tex]\frac{235}{sin116}=\frac{X}{sinx'}[/tex]
[tex]\frac{235}{sin116}=\frac{X}{sin19}[/tex]
[tex]X=85.123m[/tex]
Generally the the distance b/w Sarge and the campfire X is mathematically given as
[tex]\frac{235}{sin116}=\frac{Y}{siny}[/tex]
[tex]\frac{235}{sin116}=\frac{Y}{sin45}[/tex]
[tex]Y=184.88m[/tex]