What is the arc measure of \stackrel{\LARGE{\frown}}{BC}

BC



B, C, start superscript, \frown, end superscript in degrees?

Respuesta :

Answer:

[tex]\stackrel{\LARGE{\frown}}{BC} = 131[/tex]

Explanation:

Given

See attachment

Required

Find [tex]\stackrel{\LARGE{\frown}}{BC}[/tex]

First, we need to determine the value of y. This is calculated as:

[tex]4y+6 + 7y-7+20y-11 = 360[/tex] --- angles in a circle

Collect like terms

[tex]4y + 7y+20y = -6 + 7 + 11+360[/tex]

[tex]31y = 372[/tex]

Solve for y

[tex]y = 372/31[/tex]

[tex]y = 12[/tex]

The measure of [tex]\stackrel{\LARGE{\frown}}{BC}[/tex] is calculated as:

[tex]\stackrel{\LARGE{\frown}}{BC} = \stackrel{\LARGE{\frown}}{BA} + \stackrel{\LARGE{\frown}}{AC}[/tex]

[tex]\stackrel{\LARGE{\frown}}{BC} = 4y + 6 + 7y - 7[/tex]

Collect like terms

[tex]\stackrel{\LARGE{\frown}}{BC} = 4y + 7y + 6 - 7[/tex]

[tex]\stackrel{\LARGE{\frown}}{BC} = 11y -1\\[/tex]

Substitute [tex]y = 12[/tex]

[tex]\stackrel{\LARGE{\frown}}{BC} = 11*12 -1[/tex]

[tex]\stackrel{\LARGE{\frown}}{BC} = 131[/tex]

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE