Agagtaa
contestada

PLEASE HELP! What is the ratio of the volumes of two spheres, if the ratio of their radii is 13: 9

Respuesta :

Answer:

[tex] V_1 : V_2= 2197 : 729[/tex]

Step-by-step explanation:

Let the volumes of both the spheres be [tex] V_1, \:V_2[/tex] and their radii be [tex] r_1, \:r_2[/tex] respectively.

[tex] \huge r_1 : r_2= 13 : 9[/tex] (given)

[tex] \implies\huge \frac{r_1}{r_2}= \frac{13}{9}.....(1)[/tex]

[tex] \huge \frac{V_1}{V_2}=\frac{\cancel {\frac{4}{3} \pi} r_1^3}{\cancel {\frac{4}{3} \pi} r_2^3}[/tex]

[tex] \huge \frac{V_1}{V_2}=\frac{ r_1^3}{r_2^3}[/tex]

[tex]\huge \frac{V_1}{V_2}=\bigg(\frac{ r_1}{r_2}\bigg) ^3..... (2)[/tex]

From equations (1) & (2), we have:

[tex]\huge \frac{V_1}{V_2}=\bigg(\frac{13}{9}\bigg) ^3[/tex]

[tex] \huge \frac{V_1}{V_2}=\frac{2197}{729}[/tex]

[tex] \huge \therefore V_1 : V_2= 2197 : 729[/tex]

Thus, the ratio of the volumes of two spheres would be 2197 : 729.

Answer:

2197:729

hope it helps

please mark brainliest

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE