Respuesta :

Given:

Consider [tex]AB\parallel DE[/tex] in triangle ABC and [tex]AD=8,DC=3.2,BE=9[/tex].

To find:

The length of BC.

Solution:

Basic proportionality theorem (BPT): If a line intersect the two sides of triangle and parallel to the third side, then that line intersects the other two sides proportionally.

Using Basic proportionality theorem, we get

[tex]\dfrac{AD}{DC}=\dfrac{BE}{EC}[/tex]

[tex]\dfrac{8}{3.2}=\dfrac{9}{EC}[/tex]

On cross multiplication, we get

[tex]8\times EC=9\times 3.2[/tex]

[tex]EC=\dfrac{28.8}{8}[/tex]

[tex]EC=3.6[/tex]

Now,

[tex]BC=BE+EC[/tex]

[tex]BC=9+3.6[/tex]

[tex]BC=12.6[/tex]

Therefore, the length of side BC is 12.6 units.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE