V 153
Given tan A= - and that angle A is in Quadrant IV, find the exact value of
sec A in simplest radical form using a rational denominator.
4

V 153 Given tan A and that angle A is in Quadrant IV find the exact value of sec A in simplest radical form using a rational denominator 4 class=

Respuesta :

The secant of the angle A is 13/4

How to determine the value of sec(A)?

The given parameter is:

[tex]\tan(A) = -\frac{\sqrt{153}}{4}[/tex]

Using the trigonometry identity, we have:

[tex]\sec^2(A) = \tan^2(A) + 1[/tex]

This gives

[tex]\sec^2(A) = (-\frac{\sqrt{153}}{4})^2 + 1[/tex]

Evaluate the exponent

[tex]\sec^2(A) = \frac{153}{16} + 1[/tex]

Evaluate the sum

[tex]\sec^2(A) = \frac{169}{16}[/tex]

Take the square root of both sides

[tex]\sec(A) = \pm \frac{13}{4}[/tex]

Secant in quadrant IV is positive.

So, we have:

[tex]\sec(A) = \frac{13}{4}[/tex]

Hence, the secant of angle A is 13/4

Read more about trigonometry ratios at:

https://brainly.com/question/11967894

#SPJ1

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE