Respuesta :

Answer:

(a)

Step-by-step explanation:

Given

See attachment for sets A and B

Required

The true statement about both sets

First, we calculate the typical values (mean) of set A and set B.

This is calculated as:

[tex]Mean = \frac{\sum fx}{\sum f}[/tex]

For A:

[tex]A= \frac{0*1+2*1+5*1+6*1+7*1}{1+1+1+1+1}[/tex]

[tex]A= \frac{20}{5}[/tex]

[tex]A =4[/tex]

For B:

[tex]B = \frac{7 * 1 + 8 *1 + 9 * 2 + 10 * 1}{1+1+2+1}[/tex]

[tex]B = \frac{43}{5}[/tex]

[tex]B = 8.6[/tex]

Here, we can conclude that B has a larger typical value

Next calculate the spread (range) of sets A and B

This is calculated as:

[tex]Range = Highest -Least[/tex]

For A:

[tex]A = 7 - 0[/tex]

[tex]A = 7[/tex]

For B

[tex]B=10 - 7[/tex]

[tex]B = 3[/tex]

Here, we can conclude that A has a larger spread.

Hence, (a) is true

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE