Respuesta :

Given:

The base of an isosceles triangle is 16 cm long.

The equal sides are each 22 cm long.

To find:

The height of the triangle.

Solution:

We know that the altitude of an isosceles triangle divides the base into two equal parts as shown in the below figure.

According to the Pythagoras theorem:

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

Using Pythagoras theorem, we get

[tex]22^2=h^2+8^2[/tex]

[tex]484=h^2+64[/tex]

[tex]484-64=h^2[/tex]

[tex]420=h^2[/tex]

Taking square root on both sides, we get

[tex]\sqrt{420}=h[/tex]                  (Because side cannot be negative)

[tex]2\sqrt{105}=h[/tex]

Therefore, the height of the isosceles triangle is [tex]2\sqrt{105}[/tex] cm. Approximate height is 20.49 cm.

Ver imagen erinna
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE