Answer:
Y = 4.775 x 10⁹ Pa = 4.775 GPa
Explanation:
First, we calculate the stress on the rod:
[tex]stress = \frac{Force}{Area} = \frac{3000\ N}{\pi r^2} \\\\stress = \frac{3000\ N}{\pi (0.01\ m)^2}\\\\stress = 9.55\ x\ 10^6\ Pa = 9.55 MPa\\[/tex]
Now, we calculate the strain:
[tex]strain = \frac{Change\ in Length}{Original\ Length}\\\\strain = \frac{0.501\ m - 0.5\ m}{0.5\ m}\\\\strain = 0.002\\[/tex]
Now, we will calculate the Young's Modulus (Y):
[tex]Y = \frac{stress}{strain}\\\\Y = \frac{9.55\ x\ 10^6\ Pa}{0.002} \\[/tex]
Y = 4.775 x 10⁹ Pa = 4.775 GPa