Respuesta :

Answer:

log(7) will be the correct answer.

Step-by-step explanation:

[tex]\text{\frac{14}{3}}+\text{log}(\frac{11}{5})-\text{log}(\frac{22}{15})[/tex]By using law of logarithm to solve the given expression,

1). [tex]\text{log}(m)+\text{log}(n)=\text{log(mn)}[/tex]

2). [tex]\text{log(m)}-\text{log(n)}=\text{log}(\frac{m}{n})[/tex]

By applying these rules, we can simplify the given expression,

[tex]\text{log}(\frac{14}{3})+\text{log}(\frac{11}{5})-\text{log}(\frac{22}{15})[/tex]

[tex]\text{log}(\frac{14}{3})+\text{log}(\frac{11}{5})-\text{log}(\frac{22}{15})=\text{log}(\frac{\frac{14}{3}\times \frac{11}{5}}{\frac{22}{15}})[/tex]

                                          [tex]=\text{log}(\frac{\frac{154}{15}}{\frac{22}{15}})[/tex]

                                          = [tex]\text{log}(\frac{154}{15}\times \frac{15}{22})[/tex]

                                          = log(7)

Therefore, log(7) will be the correct answer.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE