Respuesta :

Answer:

The results are presented below.

Question 1 - sin L = [tex]\frac{3}{5}[/tex]

Question 2 - tan N= [tex]\frac{4}{3}[/tex]

Question 3 - cos L = [tex]\frac{4}{5}[/tex]

Question 4 - sin N= [tex]\frac{4}{5}[/tex]

Question 5 - x=8.5

Question 6 - x=27.2

Step-by-step explanation:

For solving this question, you need to apply the right triangle properties and trigonometric ratios in each triangle.

  • Question 1

This question asks the sin L.  You can find this value from the trigonometric ratio of sin from given right triangle:

        [tex]sin L=\frac{opposite}{hypotenuse} \\\\ sin L=\frac{6}{10}=\frac{3}{5}[/tex]

  • Question 2

This question asks the tan L. You can find this value from the trigonometric ratio of tan from given right triangle:

        [tex]tan N=\frac{opposite}{adjacent} \\\\[/tex]

The question gives the adjacent side for N, but you need to find the opposite side from Pythagorean theorem.

       [tex]10^2=6^2+(ML)^2\\ 100=36+(ML)^2\\ (ML)^2=100-36\\ (ML)^2=64\\ (ML)=\sqrt{64} \\ (ML)=8\\ or \\ (ML)=-8[/tex]

There is not side with negative dimension, hence, ML=8. Now, you can find the tangent of N.

      [tex]tan N=\frac{8}{6} =\frac{4}{3}[/tex]

  • Question 3

This question asks the cos L. You can find this value from the trigonometric ratio of cos from given right triangle:

      [tex]cos L=\frac{adjacent}{hypotenuse}[/tex]

The adjacent side (ML) you found in the question 2. ML=8, therefore:

      [tex]cos L=\frac{adjacent}{hypotenuse}\\ \\ cos L=\frac{8}{10}=\frac{4}{5}[/tex]

  • Question 4

This question asks the sin N. You can find this value from the trigonometric ratio of sin from given right triangle:

      [tex]sin N=\frac{opposite}{hypotenuse} \\\\ sin N=\frac{8}{10}=\frac{4}{5}[/tex]

  • Question 5

You can find x from the trigonometric ratio of cos :

      [tex]cos 32=\frac{adjacent}{hypotenuse}\\ \\ cos 32=\frac{x}{10}[/tex]

From calculator, you have cos 32° = 0.8480. Then,

      [tex]cos 32=\frac{adjacent}{hypotenuse}\\ \\ 0.8480=\frac{x}{10}\\ \\ x=8.5[/tex]

  • Question 6

You can find x from the trigonometric ratio of sin:

      [tex]sin 54=\frac{opposite}{hypotenuse}\\ \\ sin 54=\frac{22}{x}[/tex]

From calculator, you have sin 54° = 0.8090. Then,

      [tex]sin 54=\frac{opposite}{hypotenuse}\\ \\ 0.8090=\frac{22}{x}\\ \\ 0.8090x=22\\ \\ x=\frac{22}{0.8090} \\ \\ x=27.2[/tex]

Learn more about trigonometric ratio here:

brainly.com/question/11967894

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE