contestada


An object is projected from a height of 100m above the ground at an angle of 300to the
horizontal with a velocity of 100m/s.
Calculate
(4)
(4)
The maximum height reached above the ground
Time of flight
The velocity and the direction of the object 1 sec before it hit the ground
(4)​

Respuesta :

Answer:

a) y = 127.6 m, b) 11.9s,  c)  v = 103.6  m / s, θ’= 326.7º

Explanation:

This is a missile throwing exercise

let's start by breaking down the initial velocity

         sin 30 = [tex]\frac{v_{oy} }{v_o}[/tex]

         cos 30 = v₀ₓ / v₀

         v_{oy} = v₀ go sin 30

         v₀ₓ = v₀ cos 30

         v_{oy} = 100 sin 30 = 50 m / s

         v₀ₓ = 100 cos 30 = 86.6 m / s

a) the maximum height is requested.

At this point the vertical velocity is zero (v_y = 0)

         v_y² = [tex]v_{oy}^2[/tex] - 2 g y

         0 = v_{oy}^2 - 2g y

         y = [tex]\frac{v_{oy}^2 }{2g}[/tex]

         y = 50² / (2  9.8)

         y = 127.6 m

b) Flight time

this is the time it takes to reach the ground, the reference system for this movement is taken on the ground this is a height of y = 0 m and the body is at an initial height of i = 100m

         y = y₀ + v₀ t - ½ g t²

         

       0 = 100 + 50 t - ½ 9.8 t²

we solve the quadratic equation

        4.9 t² - 50 t - 100 = 0

         t = [tex]\frac{50 \pm \sqrt{50^2 + 4 \ 4.9 \ 100} }{2 \ 4.9}[/tex]

         t = [tex]\frac{50 \ \pm \ 66.8}{9.8}[/tex]

         t₁ = 11.9 s

         t₂ = -8.4 s

flight time is 11.9s

c) The time 1 s before hitting the ground is

        t1 = 11.9 -1

        t1 = 10.9 s

let's find the vertical speed

       v_y =[tex]v_{oy}[/tex] - g t

       v_y = 50 - 9.8 10.9

       v_y = -56.8 m / s

the negative sign indicates that the direction of the velocity is downward.

On the x-axis there is no acceleration therefore the speed is constant.

Let's use the Pythagorean theorem

        v = [tex]\sqrt{v_x^2+v_y^2}[/tex]

        v = [tex]\sqrt { 86.6^2 + 56.8^2}[/tex]

        v = 103.6  m / s

let's use trigonometry

        tan θ = [tex]\frac{v_y}{v_x}[/tex]

        θ = tan⁻¹  \frac{v_y}{v_x}

        θ = tan⁻¹  (-56.8 / 86.60)

        θ = -33.3º

the negative sign indicates that it is measured clockwise from the x-axis

for a counterclockwise measurement

          θ’= 360 - θ

          θ' = 360 - 33.3

          θ’= 326.7º

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE