A box having a weight of 8 lb is moving around in a circle of radius rA = 2 ft with a speed of (vA)1 = 5 ft/s while connected to the end of a rope. If the rope is pulled inward with a constant speed of vr = 4 ft/s, determine the speed of the box at the instant rB = 1 ft. How much work is done after pulling in the rope from A to B? Neglect friction and the size of the box

Respuesta :

Answer:

W = 1.875 J

Explanation:

For this exercise let's use the relationship between work and kinetic energy

          W = ΔK

The kinetic energy of rotational motion is

         K₀ = ½ I w²

we can assume that the box is small, so it can be treated as a point object, with moment of inertia

          I = m rₐ²

angular and linear velocity are related

          v = w r

          w = v / r

we substitute in the equation, for point A

         K₀ = ½ (m rₐ²) (v / rₐ)²

         K₀ = ½ m v²

For the final point B, as the system is isolated the angular momentum is conserved

initial        L₀ = Io wo

final          L_f = I_f w_f

                L₀ = L_f

                 I₀ w₀ = I_f w_f

               

                (m rₐ²) w₀ = (m  [tex]r_{b} ^2[/tex]) w_f

                 w_f = (rₐ/r_b)² w₀

with this value we find the final kinetic energy

         K_f = ½ I_f w_f²

         K_f = ½ (m [tex]r_{b}^2[/tex]) ( (rₐ / r_b)²  w₀) ²

         K_f = ½ m [tex]\frac{r_a^4}{r_b^2} \ w_o^2[/tex]

 

we substitute in the realcion of work

          W = K_f - K₀

          W = ½ m  [tex]( \( \frac {r_a^2 }{r_b} )^2[/tex] w₀² - ½ m v²

          W = ½ m  [tex]\frac{r_a^4}{r_b^2} ( \frac{v}{r_a} ) ^2[/tex] - ½ m v²

           W = ½ m [tex]\frac{r_a^2}{r_b^2} \ v^2[/tex] - ½ m v2

          W = ½ m v² (([tex]( \ (\frac{r_a}{r_b})^2 -1)[/tex]

let's calculate

           W = ½ ( [tex]\frac{8}{32}[/tex] ) 5 ((2/1)² -1)

           W = 0.625 (3)

           W = 1.875 J

         

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE