Answer:
[tex]t=-2.86[/tex]
Step-by-step explanation:
From the question we are told that:
Sample 1 [tex]n_1=8[/tex]
Sample 1 mean blood pressure [tex]\=x_1=89mmHg[/tex]
Sample 1 variance [tex]\sigma_1=81[/tex]
Sample 2 [tex]n_2=8[/tex]
Sample 2 mean blood pressure [tex]\=x_2=105mmHg[/tex]
Sample 2 variance [tex]\sigma_2=169[/tex]
Generally the equation for the test of statistic is mathematically given by
[tex]t=\frac{\=x_1-\=x_2}{\sqrt{\frac{\sigma_2}{n_1}+\frac{\sigma_2}{n_2} } }[/tex]
[tex]t=\frac{89-105}{\sqrt{\frac{81}{8}+\frac{169}{8} } }[/tex]
[tex]t=-2.86[/tex]
therefore the samples test for comparing the two population means
[tex]t=-2.86[/tex]