Respuesta :
Answer:
(i) [tex]\frac{2}{3}[/tex][tex]\pi[/tex]rh
(ii) [tex]\frac{16}{3}[/tex][tex]\pi[/tex]
Explanation:
Given:
V = [tex]\frac{1}{3}[/tex][tex]\pi[/tex]r²h
Where;
V = volume of a right circular cone.
r = radius of the cone
h = height of the cone.
(i) The rate of change of V with respect to r if r changes and h remains constant is [tex]\frac{dV}{dr}[/tex], and is given by finding the differentiation of V with respect to r as follow:
[tex]\frac{dV}{dr}[/tex] = [tex]\frac{d}{dr}[/tex][[tex]\frac{1}{3}[/tex][tex]\pi[/tex]r²h]
[tex]\frac{dV}{dr}[/tex] = [tex]\frac{2}{3}[/tex][tex]\pi[/tex]rh --------------------(i)
(ii)
Given;
h = 2
r = 4
Substitute these values into equation (i) as follows;
[tex]\frac{dV}{dr}[/tex] = [tex]\frac{2}{3}[/tex][tex]\pi[/tex](4 x 2)
[tex]\frac{dV}{dr}[/tex] = [tex]\frac{2}{3}[/tex][tex]\pi[/tex](8)
[tex]\frac{dV}{dr}[/tex] = [tex]\frac{16}{3}[/tex][tex]\pi[/tex]
[tex]\frac{dV}{dr}[/tex] = [tex]\frac{16}{3}[/tex][tex]\pi[/tex]
A right circular cone is one where the axis of cones is the line connecting the vertex to circular base's midway, the volume of right circular cone as follows:
Volume calculation:
Formula:
[tex]V = \frac{1}{3} \pi r^2h[/tex]
Where;
V = right circular cone volume
r = Cone radius.
h = Cone height.
The calculation for part 1:
[tex]\frac{dV}{dr}[/tex] is indeed the rate of change of V with reference to r when r changes but h remains constant, and it is calculated via calculating the differentiation of V with respect to r as follows:
[tex]\to \frac{dV}{dr} =\frac{d}{d}r [ \frac{1}{3} \pi r^2h] =\frac{2}{3} \pi r h[/tex]
The calculation for part 2:
When h = 2 and r = 4 then substituting the value into the part 1 equation then:
[tex]\to \frac{dV}{dr} = \frac{2}{3} \pi (4 \times 2) = \frac{2}{3} \pi (8) = \frac{16}{3} \pi[/tex]
Find out more about the volume here:
brainly.com/question/24086520