Answer: The molecular formula will be [tex]C_8N_4H_{10}O_2[/tex]
Explanation:
Mass of C= 49.47 g
Mass of N = 28.85 g
Mass of O = 16.48 g
Mass of H = 5.20 g
Step 1 : convert given masses into moles.
Moles of C =[tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{49.47g}{12g/mole}=4.12moles[/tex]
Moles of N =[tex]\frac{\text{ given mass of N}}{\text{ molar mass of N}}= \frac{28.85g}{14g/mole}=2.06moles[/tex]
Moles of O =[tex]\frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{16.48g}{16g/mole}=1.03moles[/tex]
Moles of H =[tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{5.20g}{1g/mole}=5.20moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = [tex]\frac{4.12}{1.03}=4[/tex]
For N = [tex]\frac{2.06}{1.03}=2[/tex]
For O =[tex]\frac{1.03}{1.03}=1[/tex]
For H = [tex]\frac{5.20}{1.03}=5[/tex]
The ratio of C : N: O: H = 4: 2: 1: 5
Hence the empirical formula is [tex]C_4N_2OH_5[/tex]
The empirical weight of [tex]C_4N_2OH_5[/tex] = 4(12)+2(14)+1(16)+5(1)= 97 g.
The molecular weight = 194.19 g/mole
Now we have to calculate the molecular formula.
[tex]n=\frac{\text{Molecular weight}}{\text{Equivalent weight}}=\frac{194.19}{97}=2[/tex]
The molecular formula will be = [tex]2\times C_4N_2H_5O=C_8N_4H_{10}O_2[/tex]