Two loudspeakers placed 6.0 m apart are driven in phase by an audio oscillator whose frequency range is 2193 Hz to 2967 Hz. A point P is located 4.4 m from one loudspeaker and 3.6 m from the other. The speed of sound is 344 m/s. The frequency produced by the oscillator, for which constructive interference of sound occurs at point P, is closest to

Respuesta :

Answer:

"2580 Hz" is the correct solution.

Explanation:

According to the question,

The path difference,

= [tex]4.4 - 3.6[/tex]

= [tex]0.80 \ m[/tex]

Speed,

= 344 m/s

For constructive interference,

⇒  [tex]Path \ difference =n\times \frac{Speed}{frequency}[/tex]

On substituting the values, we get

⇒  [tex]0.80=n\times \frac{344}{frequency}[/tex]

⇒  [tex]frequency=n\times 430[/tex]

⇒                [tex]n=\frac{frequency}{430}[/tex]

If the frequency range is,

f = 2193,

⇒  [tex]n=\frac{2193}{430}[/tex]

        [tex]=5.1[/tex]

If the frequency range is,

f = 2967,

⇒  [tex]n=\frac{2967}{430}[/tex]

        [tex]=6.9[/tex]

hence,

For n = 6, the frequency will be:

⇒  [tex]Frequency=n\times 430[/tex]

                       [tex]=6\times 430[/tex]

                       [tex]=2580 \ Hz[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE