Answer:
"2580 Hz" is the correct solution.
Explanation:
According to the question,
The path difference,
= [tex]4.4 - 3.6[/tex]
= [tex]0.80 \ m[/tex]
Speed,
= 344 m/s
For constructive interference,
⇒ [tex]Path \ difference =n\times \frac{Speed}{frequency}[/tex]
On substituting the values, we get
⇒ [tex]0.80=n\times \frac{344}{frequency}[/tex]
⇒ [tex]frequency=n\times 430[/tex]
⇒ [tex]n=\frac{frequency}{430}[/tex]
If the frequency range is,
f = 2193,
⇒ [tex]n=\frac{2193}{430}[/tex]
[tex]=5.1[/tex]
If the frequency range is,
f = 2967,
⇒ [tex]n=\frac{2967}{430}[/tex]
[tex]=6.9[/tex]
hence,
For n = 6, the frequency will be:
⇒ [tex]Frequency=n\times 430[/tex]
[tex]=6\times 430[/tex]
[tex]=2580 \ Hz[/tex]