If you create a matrix, C, to show the inventory at the end of July, the value of the entry represented by C22 is ?

In a matrix with components aij, which represents unit sales for july, the maximum possible value that a31 can have is ?

Respuesta :

Answer:

[tex]C_{22} = 389[/tex]

[tex]Max(A_{31}) =376[/tex]

Step-by-step explanation:

Given

See attachment for complete question

Solving (a): The entry C22

First, matrix C represents the inventory at the end of July.

The entry of C is calculated as:

[tex]C = Inventory - Sales[/tex]

i.e.

[tex]C = \left[\begin{array}{ccc}543&356&643\\364&476&419\\376&903&409\end{array}\right] - \left[\begin{array}{ccc}102&78&97\\98&87&59\\54&89&79\end{array}\right][/tex]

[tex]C = \left[\begin{array}{ccc}543-102&356-78&643-97\\364-98&476-87&419-59\\376-54&903-89&409-79\end{array}\right][/tex]

[tex]C = \left[\begin{array}{ccc}441&278&546\\266&389&360\\322&814&330\end{array}\right][/tex]

Item C22 means the entry at the second row and the second column.

From the matrix

[tex]C_{22} = 389[/tex]

Solving (b): The maximum A31 possible.

From the given data, we have:

[tex]Inventory = \left[\begin{array}{ccc}543&356&643\\364&476&419\\376&903&409\end{array}\right][/tex]

[tex]Unit\ Sales = \left[\begin{array}{ccc}102&78&97\\98&87&59\\54&89&79\end{array}\right][/tex]

From the matrices above.

A31 means entry at the 3rd row and 1st column.

So, the possible values of A31 are:

[tex]A_{31} = 376[/tex]

and

[tex]A_{31} = 54[/tex]

By comparison, 376 > 54

So:

[tex]Max(A_{31}) =376[/tex]  

Ver imagen MrRoyal

Answers:

1. 389

2. 376

Explanation:

I got it correct in my test :)

Ver imagen websitetechie
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE