Respuesta :

Answer:

[tex]K \approx 51.2^\circ[/tex]

[tex]K \approx 128.8^\circ[/tex]

Step-by-step explanation:

Given

[tex]k = 480[/tex]

[tex]j = 420[/tex]

[tex]\angle J = 43^\circ[/tex]

Required

Find the measure of K

The value of K ranges from: [tex]0^\circ \le K \le 180^\circ[/tex]

To do this, we apply sine rule;

[tex]\frac{j}{\sin J} = \frac{k}{\sin K}[/tex]

So, we have:

[tex]\frac{420}{\sin 43} = \frac{480}{\sin K}[/tex]

Cross multiply

[tex]\sin K * 420 = \sin 43 * 480[/tex]

Make sin K the subject

[tex]\sin K= \frac{\sin 43 * 480}{420}[/tex]

[tex]\sin K= \frac{0.6820 * 480}{420}[/tex]

[tex]\sin K= 0.7794[/tex]

Take arc sin of both sides

[tex]K = sin^{-1}(0.7794)[/tex]

[tex]K \approx 51.2^\circ[/tex]

Recall that: [tex]0^\circ \le K \le 180^\circ[/tex]

The other possible value of K is:

[tex]K \approx 180 - 51.2[/tex]

[tex]K \approx 128.8^\circ[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE