Respuesta :

Answer:

Prism A:

[tex]Area = 288cm^2[/tex]

Prism B:

[tex]Area =250cm^2[/tex]

Step-by-step explanation:

Given

See attachment for prisms

[tex]Height(h) = 10cm[/tex]

Required

Determine the surface area of both prisms

Prism A is triangular and as such, the surface area is:

[tex]Area = 2 * A_b + (a + b + c) * h[/tex]

Where

[tex]A_b = \sqrt{s * (s - a) * (s -b) * (s - c)}[/tex]

and

[tex]s = \frac{a + b + c}{2}[/tex]

Such that a, b and c are the lengths of the triangular sides of the prism.

From the attachment;

[tex]a = 8; b =6; c =10[/tex]

So, we have:

[tex]s = \frac{a + b + c}{2}[/tex]

[tex]s = \frac{8 + 6 + 10}{2}[/tex]

[tex]s = \frac{24}{2}[/tex]

[tex]s = 12[/tex]

Also:

[tex]A_b = \sqrt{s * (s - a) * (s -b) * (s - c)}[/tex]

[tex]A_b = \sqrt{12 * (12 - 8) * (12 - 6) * (12 - 10)}[/tex]

[tex]A_b = \sqrt{576}[/tex]

[tex]A_b = 24[/tex]

So:

[tex]Area = 2 * A_b + (a + b + c) * h[/tex]

[tex]Area = 2 * 24 + (8 + 6 + 10) * 10[/tex]

[tex]Area = 288cm^2[/tex]

Prism B is a rectangular prism. So, the area is calculated as:

[tex]Area = 2 * (ab + bh + ah)[/tex]

From the attachment

[tex]a = b = 5[/tex]

[tex]h =10[/tex]

So:

[tex]Area =2 * (5 * 5 + 5 * 10 + 5 * 10)[/tex]

[tex]Area =250cm^2[/tex]

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE