Respuesta :

Answer:

See Explanation

Step-by-step explanation:

The question is incomplete, as the coordinates of the three vertices.

I will answer your question using the following illustration.

Assume that the square is ABCD are the given coordinates are:

[tex]A = (3,1)[/tex]

[tex]B = (-1,5)[/tex]

[tex]C = (-5,1)[/tex]

Required

Find D

Let the coordinates of D be:

[tex]D = (x,y)[/tex]

---------------------------------------------------------------------------------------------------------

Calculate the slope of each side.

AB, BC, CD and DA using:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

AB:

[tex]A = (3,1)[/tex] -- [tex](x_1,y_1)[/tex]

[tex]B = (-1,5)[/tex] -- [tex](x_2,y_2)[/tex]

So:

[tex]m_1 = \frac{5 - 1}{-1 - 3} = \frac{4}{-4} = -1[/tex]

BC:

[tex]B = (-1,5)[/tex] -- [tex](x_1,y_1)[/tex]

[tex]C = (-5,1)[/tex] -- [tex](x_2,y_2)[/tex]

So:

[tex]m_2 = \frac{1-5}{-5--1} = \frac{-4}{-4} = 1[/tex]

CD:

[tex]C = (-5,1)[/tex] -- [tex](x_1,y_1)[/tex]

[tex]D = (x,y)[/tex] -- [tex](x_2,y_2)[/tex]

So:

[tex]m_3 = \frac{y - 1}{x --5} = \frac{y-1}{x+5}[/tex]

DA

[tex]D = (x,y)[/tex] -- [tex](x_1,y_1)[/tex]

[tex]A = (3,1)[/tex] -- [tex](x_2,y_2)[/tex]

[tex]m_4 = \frac{1-y}{3-x}[/tex]

AB and CD are parallel sides. So, they have the same slope

i.e.

[tex]m_1 = m_3[/tex]

[tex]\frac{y-1}{x+5} = -1[/tex]

Solve:

[tex]y-1 =-x-5[/tex]

Make y the subject

[tex]y =-x-5+1[/tex]

[tex]y =-x-4[/tex] ---- (1)

BC and DA are parallel sides. So, they have the same slope

i.e.

[tex]m_2 = m_4[/tex]

[tex]1 = \frac{1-y}{3-x}[/tex]

Solve:

[tex]1-y =3-x[/tex]

Make y the subject

[tex]y =1-3+x[/tex]

[tex]y =x-2[/tex] ---- (2)

So, we have:

[tex]y =-x-4[/tex] and [tex]y =x-2[/tex]

Equate both:

[tex]y=y[/tex]

[tex]-x-4=x-2[/tex]

Collect like terms

[tex]-x-x=4-2[/tex]

[tex]-2x=2[/tex]

Solve for x

[tex]x = -\frac{2}{2}[/tex]

[tex]x = -1[/tex]

Substitute [tex]x = -1[/tex] in [tex]y =x-2[/tex]

[tex]y = -1-2[/tex]

[tex]y = -3[/tex]

So, the missing coordinate is:

[tex]D = (-1,-3)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE