Respuesta :

Answer:

z = -11, z = -2

Step-by-step explanation:

Given that, ([tex]f(z)=\sqrt{z+27} -z[/tex]) and ([tex]f(z)=7[/tex]), set up an equation that puts the first value of ([tex]f(z)[/tex]) equal to the other given value of the function.

[tex]f(z)=\sqrt{z+27}-z=7[/tex]

Use inverse operations to solve,

[tex]\sqrt{z+27}-z=7\\\\\sqrt{z-27}=7+z\\\\z+27 = (7+z)^2\\\\z + 27 = 49+14z+z^2\\ -(27+z)\\\\0 = z^2+13z+22[/tex]

Factor,

[tex]0=(z+11)(z+2)[/tex]

Solve using the zero product property, the zero product property states that any number times zero equals zero;

[tex]z=-11,z=-2[/tex]

Answer:

Then solve the rest using the quadratic formula

Ver imagen Hade8ice
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE