Respuesta :

Given:

The right triangular prism.

Height of prism = 28 in.

Hypotenuse of base = 25 in.

leg of base = 24 in.

To find:

The lateral surface area of the prism.

Solution:

Pythagoras theorem:

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

Using Pythagoras theorem in the base triangle, we get

[tex]25^2=24^2+Base^2[/tex]

[tex]625-576=Base^2[/tex]

[tex]\sqrt{49}=Base[/tex]

[tex]7=Base[/tex]

The perimeter of the triangular base is:

[tex]P=7+25+24[/tex]

[tex]P=56[/tex]

Lateral area of a triangular prism is:

[tex]A=Ph[/tex]

Where, P is the perimeter of the triangular base and h is the height of the prism.

Putting [tex]P=56,h=28[/tex] in the above formula, we get

[tex]A=56(28)[/tex]

[tex]A=1568[/tex]

Therefore, the lateral area of the prism is 1568 in².

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE