Given:
The area of a rectangle = [tex]30m^{11}n^{5}[/tex]
Length of the rectangle = [tex]6m^4n^2[/tex]
To find:
The width of the rectangle.
Solution:
Area of a rectangle is:
[tex]A=l\times w[/tex]
Where, l is the length and w is the width of the rectangle.
Divide both sides by l.
[tex]\dfrac{A}{l}=w[/tex]
[tex]w=\dfrac{A}{l}[/tex]
On substituting the given values, we get
[tex]w=\dfrac{30m^{11}n^{5}}{6m^4n^2}[/tex]
[tex]w=5m^{11-4}n^{5-2}[/tex] [tex][\because \dfrac{a^m}{a^n}=a^{m-n}][/tex]
[tex]w=5m^{7}n^{3}[/tex]
Therefore, the correct option is A.