Respuesta :

Answer:

[tex]f(-4) = 64[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (1,2)[/tex]

[tex](x_2,y_2) = (2,1)[/tex]

Required

Find f(-4)

We have that:

[tex]y = ab^x[/tex]

For [tex](x_1,y_1) = (1,2)[/tex]

[tex]2 = ab^1[/tex]

[tex]2 = ab[/tex]

For [tex](x_2,y_2) = (2,1)[/tex]

[tex]1 = ab^2[/tex]

Rewrite as:

[tex]1 = ab * b[/tex]

Make b the subject

[tex]b = \frac{1}{ab}[/tex]

Substitute: [tex]2 = ab[/tex]

[tex]b = \frac{1}{2}[/tex]

Substitute [tex]b = \frac{1}{2}[/tex] in [tex]2 = ab[/tex]

[tex]2 = a * \frac{1}{2}[/tex]

[tex]a = 2 * 2[/tex]

[tex]a = 4[/tex]

To calculate f(-4), we have:

[tex]f(x) = ab^x[/tex]

[tex]f(-4) = 4 * \frac{1}{2}^{(-4)}[/tex]

[tex]f(-4) = 4 * 16[/tex]

[tex]f(-4) = 64[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE