Answer:
Stephen gets £147
Step-by-step explanation:
Given
Let
[tex]S = Stephen; B = Bridget; R = Richard[/tex]
So:
[tex]S + B + R = 490[/tex]
[tex]R = 2S[/tex]
[tex]S = 3B[/tex]
Required
Find S
Make B the subject in [tex]S = 3B[/tex]
[tex]B = \frac{S}{3}[/tex]
Substitute: [tex]R = 2S[/tex] and [tex]B = \frac{S}{3}[/tex] in [tex]S + B + R = 490[/tex]
[tex]S + \frac{S}{3} + 2S = 490[/tex]
Take LCM
[tex]\frac{3S + S + 6S}{3}= 490[/tex]
[tex]\frac{10S}{3}= 490[/tex]
Solve for S
[tex]S = \frac{490 * 3}{10}[/tex]
[tex]S = 49 * 3[/tex]
[tex]S = 147[/tex]
Stephen gets £147