Respuesta :

Answer:

1) False

2) True

3) a) True b) False

4) False

Step-by-step explanation:

1)

Two-point are collinear if they lie in the same line. The vector -2AB is antiparallel to the vector AB then it is False.

2)

A unit vector could be difinede as:

[tex]\vec{u}=\frac{\vec{v}}{|\vec{v}|}[/tex]

Terefore, [tex]\frac{1}{AB}\vec{AB}[/tex] is a unit vector. It is True.

3)    

a) If AB=-3AC

The points, A, B, and C are collinear, because all of them lie in the same line. True

b) Let's take the modulus in each side.

[tex]\vec{AB}=-3\vec{AC}[/tex]

[tex]|\vec{AB}|=|-3\vec{AC}|[/tex]

[tex]|\vec{AB}|=|-3||\vec{AC}|[/tex]

[tex]|\vec{AB}|=3|\vec{AC}|[/tex]

So it is False.

4)

If we put the vector AI = 3/2 AB into the first equation we will have:

[tex]2(-\frac{3}{2}\vec{AB})+3\vec{IB}=-3\vec{AB}+3\vec{IB}[/tex]

And we can not say that it is a cero vector, so it is False.

I hope it helps you!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE