Respuesta :
Answer:
[tex]sin(A - B) = \frac{4}{5}[/tex]
Step-by-step explanation:
Given:
[tex]sin(A) = \frac{24}{25}[/tex]
[tex]sin(B) = -\frac{4}{5}[/tex]
Need:
[tex]sin(A - B)[/tex]
First, let's look at the identities:
sum: [tex]sin(A + B) = sinAcosB + cosAsinB[/tex]
difference: [tex]sin(A - B) = sinAcosB - cosAsinB[/tex]
The question asks to find sin(A - B); therefore, we need to use the difference identity.
Based on the given information (value and quadrant), we can draw reference triangles to find the simplified values of A and B.
sin(A) = [tex]\frac{24}{25}[/tex]
cos(A) = [tex]\frac{7}{25}[/tex]
sin(B) = [tex]-\frac{4}{5}[/tex]
cos(B) = [tex]\frac{3}{5}[/tex]
Plug these values into the difference identity formula.
[tex]sin(A - B) = sinAcosB - cosAsinB[/tex]
[tex]sin(A - B) = (\frac{24}{25})(\frac{3}{5}) - (-\frac{4}{5})(\frac{7}{25})[/tex]
Multiply.
[tex]sin(A - B) = (\frac{72}{125}) + (\frac{28}{125})[/tex]
Add.
[tex]sin(A - B) = \frac{4}{5}[/tex]
This is your answer.
Hope this helps!
Answer:
[tex]\mathsf {sin (A - B) =\frac{4}{5} }[/tex]
Step-by-step explanation:
[tex]\textsf {Trigonometric Identities to keep in mind :}[/tex]
- [tex]\mathsf {sin (A - B) = sinAcosB - cosAsinB}[/tex]
- [tex]\mathsf {sin \theta = opposite/hyporenuse}[/tex]
- [tex]\mathsf {cos \theta = adjacent/hypotenuse}[/tex]
[tex]\textsf {To find cos A and cos B, we can use the Pythagorean Theorem} \\\textsf {to find the missing sides so we can take the ratio.}[/tex]
[tex]\textsf {Finding the adjacent side of angle A :}[/tex]
[tex]\implies \mathsf {24^{2} + x^{2} = 25^{2} }[/tex]
[tex]\implies \mathsf {x^{2} = 625 - 576 }[/tex]
[tex]\implies \mathsf {\sqrt{x^{2} } = \sqrt{49} }[/tex]
[tex]\implies \mathsf {x = 7}[/tex]
[tex]\textsf {Hence, cos A will be :}[/tex]
[tex]\implies \textsf {cosA = 7/25 (as cos is positive in the 1st Quadrant)}[/tex]
[tex]\textsf {Finding the adjacent side of angle B :}[/tex]
[tex]\implies \mathsf {4^{2} + x^{2} = 5^{2} }[/tex]
[tex]\implies \mathsf {x^{2} = 25 - 16 }[/tex]
[tex]\implies \mathsf {\sqrt{x^{2} } = \sqrt{9} }[/tex]
[tex]\implies \mathsf {x = 3}[/tex]
[tex]\textsf {Hence, cos B will be :}[/tex]
[tex]\implies \textsf {cos B = 3/5 (as cos is positive in the 4th quadrant)}[/tex]
[tex]\textsf {Finding sin (A - B) :}[/tex]
[tex]\implies \mathsf {sin (A - B) = (\frac{24}{25} \times \frac{3}{5}) - (\frac{7}{25} \times -\frac{4}{5}) }[/tex]
[tex]\implies \mathsf {sin (A - B) = \frac{72}{125} + \frac{28}{125}}[/tex]
[tex]\implies \mathsf {sin (A - B) = \frac{100}{125} = \frac{4}{5} }[/tex]