The personnel department of a large corporation wants to estimate the family dental expenses of its employees to determine the feasibility of providing a dental insurance plan. A random sample of 12 employees reveals the following family dental expenses (in dollars): 115, 370, 250, 593, 540, 225, 177, 425, 318, 182, 275, and 228.

a.Construct a 90% confidence interval estimate for the standard deviation of family dental expenses for all employees of this corporation.

b.
Construct a 95% confidence interval estimate for the standard deviation of family dental expenses for all employees of this corporation.

c. Construct a 99% confidence interval estimate for the standard deviation of family dental expenses for all employees of this corporation

Respuesta :

Solution :

a). Given :

a = [tex]$0.1$[/tex],

chisquare with the [tex]$0.05$[/tex],

[tex]$df=11$[/tex] is [tex]$4.57$[/tex] (from the chisquare table)

Chisquare with the [tex]$0.95$[/tex], df  = [tex]$11$[/tex] is [tex]$19.68$[/tex] (from chisquare table)

So 90% Cl is

[tex]$\left(\frac{v(n-1)\times s}{v19.68}, \frac{v(n-1)\times s}{v4.57}\right)$[/tex]

[tex]$=\frac{\sqrt{11}\times 147.928}{\sqrt{19.68}},\frac{\sqrt{11}\times 147.928}{\sqrt{4.57}}$[/tex]

[tex]$=(110.5947,229.5031)$[/tex]

b). Given :

a = [tex]$0.05$[/tex]

Chisquare with [tex]$0.025$[/tex]

df = [tex]$n-1=11$[/tex] is A, [tex]$3.82$[/tex]

Chisquare with [tex]$0.975$[/tex], df = 11 is [tex]$21.92$[/tex]

So, 95% Cl is

[tex]$\left(\frac{v(n-1)\times s}{v21.92}, \frac{v(n-1)\times s}{v3.82}\right)$[/tex]

[tex]$=\frac{\sqrt{11}\times 147.928}{\sqrt{21.92}},\frac{\sqrt{11}\times 147.928}{\sqrt{3.82}}$[/tex]

[tex]$=(104.7916,251.0239)$[/tex]

c). Given a = [tex]$0.01$[/tex], chisquare with [tex]$0.005$[/tex], df = [tex]$11$[/tex] is [tex]$2.6$[/tex]

Chisquare with [tex]$0.995$[/tex], df  = [tex]$11$[/tex] is [tex]$26.76$[/tex]

So 99% CI is

[tex]$\left(\frac{v(n-1)\times s}{v26.76}, \frac{v(n-1)\times s}{v2.6}\right)$[/tex]

[tex]$=\frac{\sqrt{11}\times 147.928}{\sqrt{26.76}},\frac{\sqrt{11}\times 147.928}{\sqrt{2.6}}$[/tex]

[tex]$=(94.84265,304.2706)$[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE