A population of rabbits in a lab, p(x), can be modeled by the function p(x)=20(1.014)^x, where x represents the number of days since the population was first counted.

Respuesta :

Answer:

(a) 20 represents the initial population and

    1.014 represents 1 + % growth of rabbits each day

(b) Average Rate of change = 0.8

Step-by-step explanation:

P.S - The exact question is -

Given - A population of rabbits in a lab, p(x), can be modeled by

            the function p(x)=20(1.014)^x, where x represents the number

            of days since the population was first counted.

To find - (a) Explain what 20 and 1.014 represent in the context of

                   the problem.

              (b) Determine, to the nearest tenth, the average rate of

                   change from day 50 to day 100.

Proof -

(a)

Given that the function p(x) is represented as

[tex]p(x) = 20(1.014)^{x}[/tex]

Here,

20 represents the initial population and

1.014 represents 1 + % growth of rabbits each day

(b)

Given,

[tex]p(x) = 20(1.014)^{x}[/tex]

When x = 50

[tex]p(50) = 20(1.014)^{50}[/tex] = 40.08000 ≈ 40.1

When x = 100

[tex]p(100) = 20(1.014)^{100}[/tex] = 80.32033 ≈ 80.3

Now,

Average Rate of change = [tex]\frac{p(100) - p(50)}{100 - 50}[/tex]

                                         = [tex]\frac{80.3 - 40.1}{50}[/tex]

                                         = [tex]\frac{40.2}{50}[/tex]

                                         = 0.804 ≈ 0.8

⇒Average Rate of change = 0.8

Ver imagen Omm2
Ver imagen Omm2
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE