Respuesta :
Examining the question:
We are given the expression:
[tex]\frac{1}{Sec(\alpha)-Tan(\alpha)}[/tex]
We know from Basic trigonometry that:
[tex]Sec(\alpha) = \frac{1}{Cos(\alpha)}[/tex]
[tex]Tan(\alpha) = \frac{Sin(\alpha)}{Cos(\alpha)}[/tex]
Simplifying the expression:
Replacing these values in the given expression, we get:
[tex]\frac{1}{\frac{1}{Cos(\alpha)} -\frac{Sin(\alpha)}{Cos(\alpha)} }[/tex]
Since the denominator of both the values in the denominator is the same:
[tex]\frac{1}{\frac{1-Sin(\alpha)}{Cos(\alpha)} }[/tex]
We know that [tex]\frac{1}{\frac{a}{b} }[/tex] = [tex]\frac{b}{a}[/tex], using the same property:
[tex]\frac{Cos(\alpha)}{1-Sin(\alpha)}[/tex]
and we are done!
Answer:
cos a
---------------------
1 -sin (a)
Step-by-step explanation:
We know that sec a = 1/ cos (a) and tan a = sin (a) / cos (a)
1
---------------------
1/ cos (a) -sin (a) / cos (a)
Multiply the top and bottom by cos (a)
1* cos a
---------------------
( 1/ cos (a) -sin (a) / cos (a)) * cos a
cos a
---------------------
1 -sin (a)