Respuesta :

Examining the question:

We are given the expression:

[tex]\frac{1}{Sec(\alpha)-Tan(\alpha)}[/tex]

We know from Basic trigonometry that:

[tex]Sec(\alpha) = \frac{1}{Cos(\alpha)}[/tex]

[tex]Tan(\alpha) = \frac{Sin(\alpha)}{Cos(\alpha)}[/tex]

Simplifying the expression:

Replacing these values in the given expression, we get:

[tex]\frac{1}{\frac{1}{Cos(\alpha)} -\frac{Sin(\alpha)}{Cos(\alpha)} }[/tex]

Since the denominator of both the values in the denominator is the same:

[tex]\frac{1}{\frac{1-Sin(\alpha)}{Cos(\alpha)} }[/tex]

We know that [tex]\frac{1}{\frac{a}{b} }[/tex] = [tex]\frac{b}{a}[/tex], using the same property:

[tex]\frac{Cos(\alpha)}{1-Sin(\alpha)}[/tex]

and we are done!

Answer:

cos a

---------------------

1  -sin (a)

Step-by-step explanation:

We know that sec a = 1/ cos (a)  and tan a = sin (a) / cos (a)

1

---------------------

1/ cos (a)  -sin (a) / cos (a)

Multiply the top and bottom by cos (a)

1* cos a

---------------------

( 1/ cos (a)  -sin (a) / cos (a)) * cos a

cos a

---------------------

1  -sin (a)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE