Maximize −4x + 5y + 70 subject to the constraints:

2x + y ≤ 8
x + 3y ≥ 5
x + y ≤ 6
x ≥ 0,
y ≥ 0

a. Fix any constraints, as needed, and then convert the linear programming problem into a system of linear equations.
b. Give a fully labeled initial tableau, and circle the pivot element.

Respuesta :

Answer:

Step-by-step explanation:

[tex]\text{To maximize -4x + 5y + 70 subject to } \\ \\ 2x + y \le 8 --- (1) \\ \\ x + 3y \ge 5 --- (2) \\ \\ x + y \le 6----(3) \\ \\ x \ge 0, y \ge 0[/tex]

[tex]\text{From above equationn (1)} : 2x + y = 8 \\ \\ \text{Divide boths sides by 8} \\ \\ \dfrac{2x}{8} + \dfrac{y}{8} = \dfrac{8}{8}[/tex]

[tex]\dfrac{x}{4} + \dfrac{y}{8} = 1 \\ \\ x = 4; y = 8[/tex]

[tex]\text{From above equationn (2)} : x + 3y = 5 \\ \\ \text{Divide boths sides by 5} \\ \\ \dfrac{x}{5} + \dfrac{3y}{5} = \dfrac{5}{5} \\ \\ x = 5; \ y = 1.66[/tex]

[tex]\text{From above equation (3)} : x + y = 6 \\ \\ \text{Divide boths sides by 5} \\ \\ \dfrac{x}{6} + \dfrac{y}{6} = \dfrac{6}{6} \\ \\ x = 6; \ y = 6[/tex]

[tex]\text{From the image attached below, we can see the representation in the graph}[/tex]

-   [tex]\text{Now from equation (1) ad (III)} \\ \\ 2x + y = 8 \\ \\ x+y = 6[/tex]

                 

    [tex]x[/tex]      [tex]= 2[/tex]

                 

[tex]From : x + y = 6 \\ \\ 2 + y = 6 \\ \\ y = 6-2 \\ \\ y =4[/tex]

[tex]\text{From equation (1) and (II) } \\ \\ \ \ 2x + y = 8 \\ - \\ \ \ x + 3y = 5 \\ \\[/tex]

[tex]-5y = -2 \\ \\ y = \dfrac{2}{5} \ o r\ 0.4 \\ \\ From : 2x+ y = 8 \\ \\ 2x = 8 - \dfrac{2}{5} \\ \\ x = \dfrac{ 8 - \dfrac{2}{5} }{2} \\ \\ x = 3.8[/tex]

Ver imagen ajeigbeibraheem
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE