the first term of A.P is 5 and the last term is 45 and the sum of all term is 400. find the number of terms and the Common difference.
help me plz ​

Respuesta :

Answer:

[tex]n =16[/tex] --- Number of terms

[tex]d = \frac{8}{3}[/tex] --- Common difference

Explanation:

Given

[tex]a = 5[/tex] --- first term

[tex]T_n = 45[/tex]

[tex]S_n = 400[/tex]

Required

Determine the number of terms (n) and the common difference (d)

The sum of n terms of an AP is:

[tex]S_n = \frac{n}{2}(a + T_n)[/tex]

This gives:

[tex]400 = \frac{n}{2}(5 + 45)[/tex]

[tex]400 = \frac{n}{2} * 50[/tex]

[tex]400 = n * 25[/tex]

Divide both sides by 25

[tex]16 = n[/tex]

[tex]n =16[/tex]

The nth term of an AP is:

[tex]T_n = a + (n - 1)d[/tex]

This gives:

[tex]45 = 5 + (16 - 1) * d[/tex]

[tex]45 = 5 + 15 * d[/tex]

Subtract 5 from both sides

[tex]45 - 5= 5 - 5 + 15 * d[/tex]

[tex]40= 15 * d[/tex]

Divide both sides by 15

[tex]\frac{40}{15} = d[/tex]

[tex]\frac{8}{3} = d[/tex]

[tex]d = \frac{8}{3}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE