A particle moves along a horizontal line so that its position at time t, t ≥ 0, is given by
s(t) = 40 + te^−t/20.
Find the minimum velocity of the particle for 0 ≤ t ≤ 100.

Respuesta :

Answer:

The minimum velocity of the particle  = [tex]-e^{-2 }[/tex] units

Step-by-step explanation:

Given - A particle moves along a horizontal line so that its position at time t,

t ≥ 0, is given by  s(t) = 40 + te^−t/20.

To find - Find the minimum velocity of the particle for 0 ≤ t ≤ 100.

Proof -

Velocity, v(t)  = [tex]\frac{d}{dt}(40 + te^{-\frac{t}{20} } )[/tex]

Now,

[tex]\frac{d}{dt}(40 + te^{-\frac{t}{20} } )[/tex] =  [tex]\frac{d}{dt}(40 ) + \frac{d}{dt}(te^{-\frac{t}{20} } )[/tex]

                       = 0 + [tex]t\frac{d}{dt}(e^{-\frac{t}{20} } ) + e^{-\frac{t}{20} }\frac{d}{dt}(t )[/tex]

                       = [tex]t(-\frac{1}{20} )e^{-\frac{t}{20} } + e^{-\frac{t}{20} }[/tex]

⇒v(t) = [tex]-\frac{t}{20}e^{-\frac{t}{20} } + e^{-\frac{t}{20} }[/tex]

Now,

For minimum velocity, Put [tex]\frac{d}{dt}(v(t)) = 0[/tex]

Now,

[tex]\frac{d}{dt}[v(t)] = \frac{d}{dt} [ -\frac{t}{20}e^{-\frac{t}{20} } + e^{-\frac{t}{20} } ][/tex]

           = [tex]-\frac{2}{20} e^{-\frac{t}{20} } + \frac{t}{400} e^{-\frac{t}{20} }[/tex]

Now,

Put [tex]\frac{d}{dt}(v(t)) = 0[/tex], we get

[tex]-\frac{2}{20} = - \frac{t}{400}[/tex]

⇒t = 40

Now,

Check that the point is minimum or maximum

Calculate  [tex]\frac{d^{2} }{dt^{2} } [v(t)][/tex]

Now,

[tex]\frac{d^{2} }{dt^{2} } [v(t)][/tex] = [tex]\frac{d}{dt} [ -\frac{2}{20} e^{-\frac{t}{20} } + \frac{t}{400} e^{-\frac{t}{20} }][/tex]

            = [tex]\frac{1}{400}e^{- \frac{t}{20} } [ 3 - \frac{t}{20}][/tex]

⇒[tex]\frac{d^{2} }{dt^{2} } [v(t)][/tex]  = [tex]\frac{1}{400}e^{- \frac{t}{20} } [ 3 - \frac{t}{20}][/tex]  > 0

∴ we get

t = 40 is point of minimum

So,

The minimum velocity be

v(40) = [tex]-\frac{40}{20}e^{-\frac{40}{20} } + e^{-\frac{40}{20} }[/tex]

      = [tex]-2e^{-2 } + e^{-2 }[/tex]

      = [tex]-e^{-2 }[/tex]

⇒v(40) = [tex]-e^{-2 }[/tex] units

∴ we get

The minimum velocity of the particle  = [tex]-e^{-2 }[/tex] units

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE