Answer:
[tex]23.58^{\circ}[/tex] and [tex]53.13^{\circ}[/tex]
[tex]44.43^{\circ}[/tex], second order does not exist
Explanation:
n = Number of lines grating = [tex]1\times10^4\ \text{Lines/cm}[/tex]
[tex]\lambda[/tex] = Wavelength
m = Order
Distance between slits is given by
[tex]d=\dfrac{1}{n}\\\Rightarrow d=\dfrac{1}{1\times 10^4}\\\Rightarrow d=10^{-6}\ \text{m}[/tex]
[tex]\lambda=400\ \text{nm}[/tex]
m = 1
We have the relation
[tex]d\sin\theta=m\lambda\\\Rightarrow \theta=\sin^{-1}\dfrac{m\lambda}{d}\\\Rightarrow \theta=\sin^{-1}\dfrac{1\times 400\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=23.58^{\circ}[/tex]
m = 2
[tex]\theta=\sin^{-1}\dfrac{2\times 400\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=53.13^{\circ}[/tex]
The first and second order angles for light of wavelength 400 nm are [tex]23.58^{\circ}[/tex] and [tex]53.13^{\circ}[/tex].
[tex]\lambda=700\ \text{nm}[/tex]
m = 1
[tex]\theta=\sin^{-1}\dfrac{1\times 700\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=44.43^{\circ}[/tex]
m = 2
[tex]\theta=\sin^{-1}\dfrac{2\times 700\times 10^{-9}}{10^{-6}}[/tex]
Here [tex]\dfrac{2\times 700\times 10^{-9}}{10^{-6}}=1.4>1[/tex] so there is no second order angle for this case.
The first order angle for light of wavelength 700 nm are [tex]44.43^{\circ}[/tex].
Second order angle does not exist.