Calculate the first and second order angles for light of wavelength 400. nm and 700. nm of the grating contains 1.00 x 104 lines/cm.

Respuesta :

Answer:

[tex]23.58^{\circ}[/tex] and [tex]53.13^{\circ}[/tex]

[tex]44.43^{\circ}[/tex], second order does not exist

Explanation:

n = Number of lines grating = [tex]1\times10^4\ \text{Lines/cm}[/tex]

[tex]\lambda[/tex] = Wavelength

m = Order

Distance between slits is given by

[tex]d=\dfrac{1}{n}\\\Rightarrow d=\dfrac{1}{1\times 10^4}\\\Rightarrow d=10^{-6}\ \text{m}[/tex]

[tex]\lambda=400\ \text{nm}[/tex]

m = 1

We have the relation

[tex]d\sin\theta=m\lambda\\\Rightarrow \theta=\sin^{-1}\dfrac{m\lambda}{d}\\\Rightarrow \theta=\sin^{-1}\dfrac{1\times 400\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=23.58^{\circ}[/tex]

m = 2

[tex]\theta=\sin^{-1}\dfrac{2\times 400\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=53.13^{\circ}[/tex]

The first and second order angles for light of wavelength 400 nm are [tex]23.58^{\circ}[/tex] and [tex]53.13^{\circ}[/tex].

[tex]\lambda=700\ \text{nm}[/tex]

m = 1

[tex]\theta=\sin^{-1}\dfrac{1\times 700\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=44.43^{\circ}[/tex]

m = 2

[tex]\theta=\sin^{-1}\dfrac{2\times 700\times 10^{-9}}{10^{-6}}[/tex]

Here [tex]\dfrac{2\times 700\times 10^{-9}}{10^{-6}}=1.4>1[/tex] so there is no second order angle for this case.

The first order angle for light of wavelength 700 nm are [tex]44.43^{\circ}[/tex].

Second order angle does not exist.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE