Missing information:
[tex]r = 3cm[/tex]
[tex]h = 1cm[/tex]
Options:
(a) [tex]\pi * 3^2 * 15[/tex] (b) [tex]\pi * 3* 15^2[/tex]
(c) 15 times the volume of the disk
(d) The height of the stack multiplied by [tex]\pi r^2[/tex]
Answer:
(b) [tex]\pi * 3* 15^2[/tex]
Step-by-step explanation:
Given
15 identical disks
[tex]r = 3cm[/tex]
[tex]h = 1cm[/tex]
Required
Determine the odd option
The volume of 1 disk is:
[tex]V_1 = \pi r^2h[/tex]
[tex]V_1 = \pi * 3^2 * 1[/tex]
The volume of 15 is:
[tex]V_{15} = 15 * V_1[/tex]
[tex]V_{15} = 15 * \pi * 3^2 * 1[/tex]
[tex]V_{15} = \pi * 3^2 * 15[/tex]
The above equation represents (a), (c) and (d)
Because:
(a): [tex]V_{15} = \pi * 3^2 * 15[/tex]
(c) 15 * volume of the disk: [tex]V_{15} = 15 * V_1[/tex] = [tex]V_{15} = \pi * 3^2 * 15[/tex]
(d) height * [tex]\pi r^2[/tex] = h * [tex]\pi r^2[/tex] = [tex]15 * \pi * 3^2 * 1[/tex] = [tex]V_{15} = \pi * 3^2 * 15[/tex]
Hence, (b) is the odd option