Using properties of logarithms in excersises 13-18, use the properties of logarithms o write the logarithm in terms of log3(5) and log3(7) log3 (21/5)

Respuesta :

Answer:

[tex]log_3(\frac{21}{5}) = log_3(7) - log_3(5)+ 1[/tex]

Step-by-step explanation:

Given

[tex]log_3(\frac{21}{5})[/tex]

Required

Express in terms of [tex]log_3(5)[/tex] and [tex]log_3(7)[/tex]

[tex]log_3(\frac{21}{5})[/tex]

Express 21 as 7 * 3

[tex]log_3(\frac{21}{5}) = log_3(\frac{7 * 3}{5})[/tex]

Apply law of logarithm

[tex]log_3(\frac{21}{5}) = log_3(7) + log_3(3) - log_3(5)[/tex]

[tex]log_3(3) = 1[/tex]. So, we have:

[tex]log_3(\frac{21}{5}) = log_3(7) + 1 - log_3(5)[/tex]

Rewrite:

[tex]log_3(\frac{21}{5}) = log_3(7) - log_3(5)+ 1[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE