Answer:
The answer is "1110, 20.4, and 31.408"
Step-by-step explanation:
For point a:
Given:
[tex]\to mean\ ( \bar{x})=1051\\\\\to standard \ deviation \ (\sigma)=194\\\\\to P(Z<=z)=0.62\\\\\to z=0.3055\\[/tex]
Calculating the SAT score:
[tex]=1051+0.3055 \times 194 \\\\ =1110.267 \approx 1110[/tex]
For point b:
Given:
[tex]\to mean \ \bar{x}=19\\\\ \to standard \ deviation \ (\sigma) =4.7\\\\[/tex]
Calculating the equivalent ACT score:
[tex]=19+0.3055 \times 4.7 \\\\ =20.43585 \approx 20.4[/tex]
For point c:
[tex]\to SAT \ Score =1563\\\\\to z=\frac{(1563-1051)}{194}= \frac{512}{194}=2.64\\\\[/tex]
Calculating equivalent ACT score:
[tex]=19+2.64 \times 4.7 \\\\=31.408[/tex]