Suppose C1;C2;C3 are three didifferent biased coins, whose probability of heads equals 0.4, 0.5, and 0.2 respectively. Suppose coins are placed together in a box and you randomly picked a coin from the box. Flip the coin 10 times. Let A denote the event you randomly chose coin C1. Let B denote the event that you got exactly 4 heads out of the 10 coin flips.

Compute the following probabilities:

P(A∩B)
P(B)
P(A|B)

Respuesta :

Solution :

[tex]$ P(A \cap B) = P(\text{coin}\ C_1 \text{ chosen and 4 heads in 10 trails})$[/tex]

                [tex]$= \frac{1}{3} \times ^{10}C_4 \times 0.4^4 \times 0.6^6$[/tex]

               = 0.0836

P(B)= P(coin [tex]$C_1$[/tex] chosen and 4 heads in 10 trails) + P(coin [tex]$C_2$[/tex] chosen and 4 heads in 10 trail) + P(coin [tex]$C_3$[/tex] chosen and 4 heads in 10 trail)

     [tex]$=\frac{1}{3}\times ^{10}C_4 \times 0.4^4 \times 0.6^6 + \frac{1}{3}\times ^{10}C_4 \times 0.5^4 \times 0.5^6 + \frac{1}{3}\times ^{10}C_4 \times 0.2^4 \times 0.8^6$[/tex]

    [tex]$=0.0836+0.0684+0.0294$[/tex]

    [tex]$=0.1813$[/tex]

P(A|B) = [tex]$\frac{P(A \cap B)}{P(B)}$[/tex]

          [tex]$=\frac{0.0836}{0.1813}$[/tex]

         [tex]$=0.4611$[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE