Respuesta :

Answer:

Proved

Explanation:

Given

[tex]\frac{(1+tan^2\theta). cot\theta}{cosec^2 \theta}= tan \theta[/tex]

Required

Prove

In trigonometry:

[tex]1 + tan^2\theta = sec^2\theta[/tex]

So, we have:

[tex]\frac{sec^2\theta * cot\theta}{cosec^2 \theta}= tan \theta[/tex]

Express each identity as an inverse:

[tex]\frac{\frac{1}{cos^2\theta} * \frac{1}{tan\theta}}{\frac{1}{sin^2 \theta}}= tan \theta[/tex]

Rewrite as:

[tex](\frac{1}{cos^2\theta} * \frac{1}{tan\theta})/ \frac{1}{sin^2 \theta}= tan \theta[/tex]

Express tan as sin/cos:

[tex](\frac{1}{cos^2\theta} * \frac{1}{sin\theta/cos\theta})/ \frac{1}{sin^2 \theta}= tan \theta[/tex]

[tex](\frac{1}{cos^2\theta} * \frac{1}{sin\theta/cos\theta}) * sin^2 \theta= tan \theta[/tex]

[tex](\frac{1}{cos^2\theta} * \frac{cos\theta}{sin\theta}) * sin^2 \theta= tan \theta[/tex]

[tex](\frac{1}{cos\theta} * \frac{1}{sin\theta}) * sin^2 \theta= tan \theta[/tex]

[tex]\frac{sin^2 \theta}{cos\theta*sin\theta}= tan \theta[/tex]

[tex]\frac{sin \theta}{cos\theta}= tan \theta[/tex]

[tex]tan \theta= tan \theta[/tex]

Proved

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE