Write out the form of the partial fraction decomposition of the function (as in this example). Do not determine the numerical values of the coefficients. (a) x − 20 x2 + x − 20 Incorrect: Your answer is incorrect. (b) x2 x2 + x + 20 Incorrect: Your answer is incorrect.

Respuesta :

Answer:

[tex]\frac{x - 20}{ x^2 + x - 20} = \frac{5}{9(x-4)}+\frac{4}{(x+5)}[/tex]

Step-by-step explanation:

Given

[tex]\frac{x - 20}{ x^2 + x - 20}[/tex]

Required

Decompose into partial fraction

Start by factorizing the denominator:

[tex]x^2 + x - 20 =x^2 + 5x -4x- 20[/tex]

[tex]x^2 + x - 20 =x(x + 5)-4(x+5)[/tex]

[tex]x^2 + x - 20 =(x-4)(x+5)[/tex]

So, we have:

[tex]\frac{x - 20}{ x^2 + x - 20} = \frac{A}{x-4}+\frac{B}{x+5}[/tex]

Take LCM

[tex]\frac{x - 20}{ x^2 + x - 20} = \frac{A(x+5)+B(x-4)}{(x-4)(x+5)}[/tex]

Cancel out the denominator

[tex]x - 20 = A(x+5)+B(x-4)}[/tex]

Open brackets

[tex]x - 20 = Ax+5A+Bx-4B[/tex]

Collect Like Terms

[tex]x - 20 = Ax+Bx+5A-4B[/tex]

[tex]x - 20 = (A+B)x+5A-4B[/tex]

By comparison;

[tex](A +B)x = x[/tex] ==>[tex]A + B = 1[/tex]

[tex]5A - 4B = 1[/tex]

Make A the subject in [tex]A + B = 1[/tex]

[tex]A = 1 - B[/tex]

Substitute 1 - B for A in [tex]5A - 4B = 1[/tex]

[tex]5(1-B) -4B = 1[/tex]

[tex]5-5B -4B = 1[/tex]

[tex]5-9B = 1[/tex]

Collect Like Terms

[tex]-9B = 1 - 5[/tex]

[tex]-9B = - 4[/tex]

[tex]B = \frac{4}{9}[/tex]

[tex]A = 1 - B[/tex]

[tex]A = 1 - \frac{4}{9}[/tex]

[tex]A = \frac{9-4}{9}[/tex]

[tex]A = \frac{5}{9}[/tex]

So:

[tex]\frac{x - 20}{ x^2 + x - 20} = \frac{A}{x-4}+\frac{B}{x+5}[/tex]

[tex]\frac{x - 20}{ x^2 + x - 20} = \frac{5}{9(x-4)}+\frac{4}{(x+5)}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE