Consider a sample with data values of 27, 24, 21, 16, 30, 33, 28, and 24. Compute the 20th, 25th, 65th, and 75th percentiles. 20th percentile 20 Correct: Your answer is correct. 25th percentile 21 Incorrect: Your answer is incorrect. 65th percentile 27.5 Incorrect: Your answer is incorrect. 75th percentile 28 Incorrect: Your answer is incorrect.

Respuesta :

Answer:

[tex]P_{20} = 20[/tex] --- 20th percentile

[tex]P_{25} = 21.75[/tex]  --- 25th percentile

[tex]P_{65} = 27.85[/tex]   --- 65th percentile

[tex]P_{75} = 29.5[/tex]   --- 75th percentile

Step-by-step explanation:

Given

27, 24, 21, 16, 30, 33, 28, and 24.

N = 8

First, arrange the data in ascending order:

Arranged data: 16, 21, 24, 24, 27, 28, 30, 33

Solving (a): The 20th percentile

This is calculated as:

[tex]P_{20} = 20 * \frac{N +1}{100}[/tex]

[tex]P_{20} = 20 * \frac{8 +1}{100}[/tex]

[tex]P_{20} = 20 * \frac{9}{100}[/tex]

[tex]P_{20} = \frac{20 * 9}{100}[/tex]

[tex]P_{20} = \frac{180}{100}[/tex]

[tex]P_{20} = 1.8th\ item[/tex]

This is then calculated as:

[tex]P_{20} = 1st\ Item +0.8(2nd\ Item - 1st\ Item)[/tex]

[tex]P_{20} = 16 + 0.8*(21 - 16)[/tex]

[tex]P_{20} = 16 + 0.8*5[/tex]

[tex]P_{20} = 16 + 4[/tex]

[tex]P_{20} = 20[/tex]

Solving (b): The 25th percentile

This is calculated as:

[tex]P_{25} = 25 * \frac{N +1}{100}[/tex]

[tex]P_{25} = 25 * \frac{8 +1}{100}[/tex]

[tex]P_{25} = 25 * \frac{9}{100}[/tex]

[tex]P_{25} = \frac{25 * 9}{100}[/tex]

[tex]P_{25} = \frac{225}{100}[/tex]

[tex]P_{25} = 2.25\ th[/tex]

This is then calculated as:

[tex]P_{25} = 2nd\ item + 0.25(3rd\ item-2nd\ item)[/tex]

[tex]P_{25} = 21 + 0.25(24-21)[/tex]

[tex]P_{25} = 21 + 0.25(3)[/tex]

[tex]P_{25} = 21 + 0.75[/tex]

[tex]P_{25} = 21.75[/tex]

Solving (c): The 65th percentile

This is calculated as:

[tex]P_{65} = 65 * \frac{N +1}{100}[/tex]

[tex]P_{65} = 65 * \frac{8 +1}{100}[/tex]

[tex]P_{65} = 65 * \frac{9}{100}[/tex]

[tex]P_{65} = \frac{65 * 9}{100}[/tex]

[tex]P_{65} = \frac{585}{100}[/tex]

[tex]P_{65} = 5.85\th[/tex]

This is then calculated as:

[tex]P_{65} = 5th + 0.85(6th - 5th)[/tex]

[tex]P_{65} = 27 + 0.85(28 - 27)[/tex]

[tex]P_{65} = 27 + 0.85(1)[/tex]

[tex]P_{65} = 27 + 0.85[/tex]

[tex]P_{65} = 27.85[/tex]

Solving (d): The 75th percentile

This is calculated as:

[tex]P_{75} = 75 * \frac{N +1}{100}[/tex]

[tex]P_{75} = 75 * \frac{8 +1}{100}[/tex]

[tex]P_{75} = 75 * \frac{9}{100}[/tex]

[tex]P_{75} = \frac{75 * 9}{100}[/tex]

[tex]P_{75} = \frac{675}{100}[/tex]

[tex]P_{75} = 6.75th[/tex]

This is then calculated as:

[tex]P_{75} = 6th + 0.75(7th - 6th)[/tex]

[tex]P_{75} = 28 + 0.75(30- 28)[/tex]

[tex]P_{75} = 28 + 0.75(2)[/tex]

[tex]P_{75} = 28 + 1.5[/tex]

[tex]P_{75} = 29.5[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE