Answer:
4.55
Explanation:
The terminal speed of a diver is given by:
[tex]v_t=\sqrt{\frac{2mg}{C\rho A} } \\\\Where\ m=mass\ of \ driver,d=acceleration\ due\ to\ gravity,C=drag\ \\coefficient,A=cross\ sectional\ Area.\\\\Therefore:\\\\A=\frac{2mg}{C \rho v_t^2} \\\\For\ area\ with\ terminal\ speed\ in\ spread\ angle\ position(v_s):\\\\A_s=\frac{2mg}{C \rho v_s^2} \\\\For\ area\ with\ terminal\ speed\ in\ nose\ dive\ position(v_n):\\\\A_n=\frac{2mg}{C \rho v_n^2}\\\\Therefore\ since\ g,m,C,\rho\ are\ constant:\\\\[/tex]
[tex]\frac{A_s}{A_n}= \frac{\frac{2mg}{C \rho v_s^2}}{\frac{2mg}{C \rho v_n^2}}\\\\\frac{A_s}{A_n}= \frac{v_n}{v_s} \\\\v_n=320\ km/h,v_s=150\ km/h\\\\\frac{A_s}{A_n}=\frac{320^2}{150^2} =4.55[/tex]