A point charge q is located at the center of a spherical shell of radius a that has a charge −q uniformly distributed on its surface. Find the electric field for the following points: (a) for all points outside the spherical shell E = keq2/r2 E = q/4πr2 none of these E = keq/r2 E = 0 (b) for a point inside the shell a distance r from the center E = keq2/r2 E = keq/r2 E = 0 E = q/4πr2 none of these

Respuesta :

Answer:

a) E = 0

b) [tex]E = \dfrac{k_e \cdot q}{ r^2 }[/tex]

Explanation:

The electric field for all points outside the spherical shell is given as follows;

a) [tex]\phi_E = \oint E \cdot dA = \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}[/tex]

From which we have;

[tex]E \cdot A = \dfrac{{\Sigma Q}}{\varepsilon _{0}} = \dfrac{+q + (-q)}{\varepsilon _{0}} = \dfrac{0}{\varepsilon _{0}} = 0[/tex]

E = 0/A = 0

E = 0

b) [tex]\phi_E = \oint E \cdot dA = \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}[/tex]

[tex]E \cdot A = \dfrac{+q }{\varepsilon _{0}}[/tex]

[tex]E = \dfrac{+q }{\varepsilon _{0} \cdot A} = \dfrac{+q }{\varepsilon _{0} \cdot 4 \cdot \pi \cdot r^2}[/tex]

By Gauss theorem, we have;

[tex]E\oint dS = \dfrac{q}{\varepsilon _{0}}[/tex]

Therefore, we get;

[tex]E \cdot (4 \cdot \pi \cdot r^2) = \dfrac{q}{\varepsilon _{0}}[/tex]

The electrical field outside the spherical shell

[tex]E = \dfrac{q}{\varepsilon _{0} \cdot (4 \cdot \pi \cdot r^2) }= \dfrac{q}{4 \cdot \pi \cdot \varepsilon _{0} \cdot r^2 }= \dfrac{q}{(4 \cdot \pi \cdot \varepsilon _{0} )\cdot r^2 }[/tex]

[tex]k_e= \dfrac{1}{(4 \cdot \pi \cdot \varepsilon _{0} ) }[/tex]

Therefore, we have;

[tex]E = \dfrac{k_e \cdot q}{ r^2 }[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE