Solution :
Finding the cohesion of the soil(c) using the relation:
[tex]$c = \frac{q_u}{2}$[/tex]
Here, [tex]$q_u$[/tex] is the unconfined compression strength of the soil;
[tex]$c = \frac{800}{2}$[/tex]
= 400 psf
∴ The cohesion value is greater than 0
So the use of the angle of internal friction is 0
Referring to the table relation between bearing capacity factors and angle of internal friction.
For the angle of inter friction [tex]$0^\circ$[/tex]
[tex]$N_c = 5.14$[/tex]
[tex]$N_q = 1.0$[/tex]
[tex]$N_r = 0$[/tex]
Therefore,
[tex]$q_{ult} = (400 \times 5.14 )+(110 \times 3 \times 1.0)+(0.5 \times 100 \times 13 \times 0)$[/tex]
= 2386 psf
∴ Allowable bearing capacity [tex]$q_{a} = \frac{Q_{allow}}{A}$[/tex]
[tex]$=\frac{30}{B^2}$[/tex]
∴ [tex]$q_a = \frac{q_{ult}}{F.O.S}$[/tex]
[tex]$\frac{30}{B^2} = \frac{2386}{3}$[/tex]
∴ B = 0.2 ft
Therefore, the dimension of the square footing is 0.2 ft x 0.2 ft
[tex]$=0.04 \ ft^2$[/tex]