The diagram shows two right-angled triangles. PQR and QST are straight lines. It is given that sin x = [tex]\frac{15}{17}[/tex] . Find the value of cos y.

Step-by-step explanation:
[tex] \sin(x) = \frac{15}{17} = \frac{23 + c}{34} \\ 34 \times 15 = 17(23 + c) \\ 510 = 391 + 17c \\ 17c = 119 \\ c = 7[/tex]
[tex] \sin (y) = \frac{7}{25} \\ y = 16.26 \\ \cos(16.26) = \frac{ \alpha }{25} \\ 0.96 = \frac{ \alpha }{25} \\ \alpha = 24 [/tex]
[tex] \cos(y) = \frac{24}{25} [/tex]