The total number of gallons of water in a tank at time t is modeled by the expression A(t)=30+8t-2/3(t+1)^3/2

Respuesta :

Answer:

193 gallons

Step-by-step explanation:

Given

[tex]A(t) = 30+8t-\frac{2}{3}(t+1)^{\frac{3}{2}}[/tex]

Required

Determine the maximum amount of water the tank can hold --- Missing from the question

Start by differentiating A w.r.t t

[tex]A'(t) = 0 + 8 + \frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}][/tex]

Solving: [tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}[/tex]

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -\frac{2}{3}\frac{d}{dt}[(t+1)^{\frac{3}{2}}[/tex]

Apply power rule:

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -\frac{2}{3}[\frac{3}{2}(t + 1)^{\frac{3}{2}-1} * \frac{d}{dt}[t+1][/tex]

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -(t + 1)^{\frac{3}{2}-1} * \frac{d}{dt}[t+1][/tex]

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -(t + 1)^{\frac{3}{2}-1} * [1+0][/tex]

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -(t + 1)^{\frac{3}{2}-1} * [1][/tex]

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -(t + 1)^{\frac{3}{2}-1}[/tex]

[tex]\frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}} = -(t + 1)^{\frac{1}{2}}[/tex]

So:

[tex]A'(t) = 0 + 8 + \frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}][/tex]

A'(t) = 0 + 8 + \frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}]

[tex]A'(t) = 0 +8 -(t + 1)^{\frac{1}{2}}[/tex]

[tex]A'(t) = 8 -(t + 1)^{\frac{1}{2}}[/tex]

Equate to 0 to solve for t

[tex]A'(t) = 0[/tex]

[tex]8 -(t + 1)^{\frac{1}{2}} = 0[/tex]

Collect Like Term

[tex]-(t + 1)^{\frac{1}{2}} = -8[/tex]

Square both sides

[tex](-(t + 1)^{\frac{1}{2}})^2 = (-8)^2[/tex]

[tex]t +1 = 64[/tex]

Make t the subject:

[tex]t = 64 - 1[/tex]

[tex]t = 63[/tex]

So, the tank is at maximum when t = 63.

Substitute 63 for t in: [tex]A(t) = 30+8t-\frac{2}{3}(t+1)^{\frac{3}{2}}[/tex]

[tex]A(63) = 30+8*63-\frac{2}{3}(63+1)^{\frac{3}{2}}[/tex]

[tex]A(63) = 30+8*63-\frac{2}{3}(64)^{\frac{3}{2}}[/tex]

[tex]A(63) = 30+8*63-\frac{2}{3}*512}[/tex]

[tex]A(63) = 30+8*63-\frac{2*512}{3}}[/tex]

[tex]A(63) = 30+8*63-\frac{1024}{3}}[/tex]

[tex]A(63) = 30+8*63-341.33[/tex]

[tex]A(63) = 192.67[/tex]

Approximate:

[tex]A(63) = 193[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE