Find the length of side x in simplest radical form with a rational denominator.
60
х
309
2

Answer:
[tex]\frac{2}{3} \sqrt{3}[/tex]
Step-by-step explanation:
We know this triangle has angles 30, 60, and 90 degrees. Triangles with these angles have a special relationship on the sides.
The side opposite to the 90 degree angle is 2 times of x.
The side opposite to the 60 degree angle is [tex]\sqrt{3}[/tex] multiplied x.
We know the side opposite to 60 degree angle is 2, so x would be
[tex]\frac{2}{\sqrt{3}}[/tex]
However, we can't have an irrational number in the demoninator so we multiply the fractice by root 3 over root 3:
[tex]\frac{2}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}[/tex]
which gives us [tex]\frac{2}{3} \sqrt{3}[/tex]