The upper-left coordinates on a rectangle are (- 8, 8) and the upper-right coordinates are (- 3, 8) The rectangle has an area of 15 square units

Respuesta :

Answer:

See attachment for diagram

Step-by-step explanation:

Given

[tex](x_1,y_1) = (-8,8)[/tex]

[tex](x_2,y_2) = (-3,8)[/tex]

[tex]Area = 15[/tex]

Required

Draw the rectangle on a coordinate plane --- (missing from the question)

First, we calculate the distance between the given pairs.

[tex]D = \sqrt{(x_1 - x_2)^2 + (y_1-y_2)^2}[/tex]

[tex]D = \sqrt{(-8-(-3))^2 + (8-8)^2}[/tex]

[tex]D = \sqrt{25}[/tex]

[tex]D = 5[/tex]

So, the distance between the given pairs is 5 units... Let this be the length of the rectangle.

Using:

[tex]Area = Length * Width[/tex]

[tex]15 = 5 * Width[/tex]

[tex]Width = \frac{15}{5}[/tex]

[tex]Width = 3[/tex]

The width is 3 units.

This implies that the opposite sides of the rectangle are either 3 units down or 3 units up the given pairs.

Assume they are 3 units up.

[tex](x_1,y_1) = (-8,8)[/tex]   and [tex](x_2,y_2) = (-3,8)[/tex]

[tex](x_3,y_3) = (x_1,y_3 + 3) = (-8,8+3) = (-8,11)[/tex]

[tex](x_4,y_4) = (x_2,y_2 + 3) = (-3,8+3) = (-3,11)[/tex]

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE