help guys soal integral​

Answer:
E. [tex] \purple { \bold{ \frac{2}{3} ( \frac{x - 1}{x} ) \sqrt{\frac{x - 1}{x} } + c }}[/tex]
Step-by-step explanation:
[tex] \int \sqrt{ \frac{x - 1}{ {x}^{5} } } dx \\ \\ = \int \sqrt{ \frac{x - 1}{ {x}^{4} .x} } dx \\ \\ = \int \frac{1}{ {x}^{2}}\sqrt{ \frac{x - 1}{ x} } dx \\ \\ = \int \frac{1}{ {x}^{2}}\sqrt{ 1 - \frac{1}{ x} } dx \\ \\ let \: 1 - \frac{1}{ x} = t \\ \\ \implies \: \frac{1}{ {x}^{2} } dx = dt \\ \\ \implies \int \frac{1}{ {x}^{2}}\sqrt{ 1 - \frac{1}{ x} } dx = \int \sqrt{t} dt \\ \\ = \int {t}^{ \frac{1}{2} } dt \\ \\ = \frac{t ^{ \frac{3}{2} } }{ \frac{3}{2} } + c \\ \\ = \frac{2}{3} t ^{ \frac{3}{2} } + c \\ \\ = \frac{2}{3} \sqrt{ {t}^{3} } + c \\ \\ = \frac{2}{3} t\sqrt{ {t} } + c \\ \\ = \frac{2}{3} (1 - \frac{1}{x} ) \sqrt{1 - \frac{1}{x} } + c \\ \\ \red{ \bold{= \frac{2}{3} ( \frac{x - 1}{x} ) \sqrt{\frac{x - 1}{x} } + c }}\\ \\ [/tex]